Tubulin transport in neurons
نویسندگان
چکیده
A question of broad importance in cellular neurobiology has been, how is microtubule cytoskeleton of the axon organized? It is of particular interest because of the history of conflicting results concerning the form in which tubulin is transported in the axon. While many studies indicate a stationary nature of axonal microtubules, a recent series of experiments reports that microtubules are recruited into axons of neurons grown in the presence of a microtubule-inhibitor, vinblastine (Baas, P.W., and F.J. Ahmad. 1993.J. Cell Biol. 120:1427-1437: Ahmad F.J., and P.W. Baas. 1995. J. Cell Sci, 108:2761-2769; Sharp, D.J., W. Yu, and P.W. Baas. 1995. J. Cell Biol, 130:93-103; Yu, W., and P.W. Baas. 1995. J. Neurosci. 15:6827-6833.). Since vinblastine stabilizes bulk microtubule-dynamics in vitro, it was concluded that preformed microtubules moved into newly grown axons. By visualizing the polymerization of injected fluorescent tubulin, we show that substantial microtubule polymerization occurs in neurons grown at reported vinblastine concentrations. Vinblastine inhibits, in a concentration-dependent manner, both neurite outgrowth and microtubule assembly. More importantly, the neuron growth conditions of low vinblastine concentration allowed us to visualize the footprints of the tubulin wave as it polymerized and depolymerized during its slow axonal transport. In contrast, depolymerization resistant fluorescent microtubules did not move when injected in neurons. We show that tubulin subunits, not microtubules, are the primary form of tubulin transport in neurons.
منابع مشابه
Sensory Neurons Selectively Upregulate Synthesis and Transport of the P,,,-Tubulin Protein during Axonal Regeneration
The effects of peripheral nerve injury on the content, synthesis, and axonal transport of the class Ill 6-tubulin protein in adult rat dorsal root ganglion (DRG) neurons were examined. Recent reports of selective increases in the steady-state levels of the j$,,-tubulin mRNA during axonal regeneration (Moskowitz et al., 1993) led to the hypothesis that upregulated levels of expression of the j3,...
متن کاملAxonal transport of tubulin in tit pioneer neurons in situ
In neurons, tubulin is synthesized only in the cell body or dendrites, yet the growing axon requires a steady supply of this protein at the growth cone. Hence, some mechanism must exist to move tubulin from the cell body to the growth cone. Transport could conceivably occur by simple diffusion, translocation of polymer, or some form of monomer or oligomer transport. Evidence for all these has b...
متن کاملDelivery of newly synthesized tubulin to rapidly growing distal axons of sympathetic neurons in compartmented cultures
Growing axons receive a substantial supply of tubulin and other proteins delivered from sites of synthesis in the cell body by slow axonal transport. To investigate the mechanism of tubulin transport most previous studies have used in vitro models in which the transport of microtubules can be visualized during brief periods of growth. To investigate total tubulin transport in neurons displaying...
متن کاملHDAC6 Regulates Mitochondrial Transport in Hippocampal Neurons
BACKGROUND Tubulin is a major substrate of the cytoplasmic class II histone deacetylase HDAC6. Inhibition of HDAC6 results in higher levels of acetylated tubulin and enhanced binding of the motor protein kinesin-1 to tubulin, which promotes transport of cargoes along microtubules. Microtubule-dependent intracellular trafficking may therefore be regulated by modulating the activity of HDAC6. We ...
متن کاملDifferentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 133 شماره
صفحات -
تاریخ انتشار 1996